Effect of Resistance Drift on the Activation Energy for Crystallization in Phase Change Memory

نویسندگان

  • Chiyui Ahn
  • Byoungil Lee
  • Rakesh G. D. Jeyasingh
  • Mehdi Asheghi
  • Fred Hurkx
  • Kenneth E. Goodson
  • Philip Wong
چکیده

The crystallization properties of phase-change memory (PCM) in the presence of thermal disturbances are investigated with a novel micro-thermal stage. It is found that the recrystallization time due to thermal disturbances significantly varies depending on how the PCM cell drifts. The longer crystallization time is obtained following additional resistance drift, which can be described by an increase of the effective activation energy for crystallization. The possibility of achieving better retention in a PCM cell by allowing the PCM cell to drift for a longer time is demonstrated in this work. The activation energy changes at a rate of more than 1 eV/decade with varying time intervals below a second. As the ambient temperature gets higher, the effect of resistance drift on the crystallization process is diminished with respect to the dominant crystallization process which has a higher crystal growth rate at elevated ambient temperatures. # 2012 The Japan Society of Applied Physics

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A microscopic model for resistance drift in amorphous Ge2Sb2Te5

A microscopic model for the resistance drift in the phase-change memory is proposed based on the firstprinciples results on the compressed amorphous Ge2Sb2Te5. First, it is shown that the residual pressure in the phase-change memory cell can be significant due to the density change accompanying the phase transformation. Our previous first-principles calculations showed that the energy gap is re...

متن کامل

Universite Paris - Sud 11 École

Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Typical phase-change alloys are composed out of the elements germanium, antimony and tellurium. Due to the exceptional combination of properties phase-change materials find already broad application in non-...

متن کامل

Determination of the activation energy of crystallization based up on Ozawa and Kissinger formalisms and thermal stability of V2O5-NiO- TeO2 glasses by differential scanning calorimetry (DSC)

In the present research work, (60-x)V2O5-xNiO-40TeO2 amorphous bulk compositions with different molar percentages of 0≤x≤20 mol%, were prepared by well-known  rapid melt-quenching method. Differential scanning calorimetry (DSC) at different heating rates (φ) was used to thermal analyze and to obtain more insight in to the thermal stability, glass forming tendency and so calorimetric characteris...

متن کامل

EFFECTS OFVARIOUS NUCLEATION AGENTS ON CRYSTALLIZATION KINETIC OFLAS GLASS CERAMIC

The effect of Y2O3, CeO2, P2O5, ZrO2 and TiO2 in single, double and triple form on crystallization mechanism of Li2OAl2O3- SiO2(LAS) glass-ceramic system was investigated .The nucleation and crystallization peak temperatures of optimized samples in each group were determined by Ray & Day method .The crystalline phase was determined by the X-ray diffractometery .The micro-structure of the sample...

متن کامل

Relation between bandgap and resistance drift in amorphous phase change materials

Memory based on phase change materials is currently the most promising candidate for bridging the gap in access time between memory and storage in traditional memory hierarchy. However, multilevel storage is still hindered by the so-called resistance drift commonly related to structural relaxation of the amorphous phase. Here, we present the temporal evolution of infrared spectra measured on am...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012